8,270 research outputs found

    Computationally-efficient stochastic cluster dynamics method for modeling damage accumulation in irradiated materials

    Full text link
    An improved version of a recently developed stochastic cluster dynamics (SCD) method {[}Marian, J. and Bulatov, V. V., {\it J. Nucl. Mater.} \textbf{415} (2014) 84-95{]} is introduced as an alternative to rate theory (RT) methods for solving coupled ordinary differential equation (ODE) systems for irradiation damage simulations. SCD circumvents by design the curse of dimensionality of the variable space that renders traditional ODE-based RT approaches inefficient when handling complex defect population comprised of multiple (more than two) defect species. Several improvements introduced here enable efficient and accurate simulations of irradiated materials up to realistic (high) damage doses characteristic of next-generation nuclear systems. The first improvement is a procedure for efficiently updating the defect reaction-network and event selection in the context of a dynamically expanding reaction-network. Next is a novel implementation of the τ\tau-leaping method that speeds up SCD simulations by advancing the state of the reaction network in large time increments when appropriate. Lastly, a volume rescaling procedure is introduced to control the computational complexity of the expanding reaction-network through occasional reductions of the defect population while maintaining accurate statistics. The enhanced SCD method is then applied to model defect cluster accumulation in iron thin films subjected to triple ion-beam (Fe3+\text{Fe}^{3+}, He+\text{He}^{+} and \text{H\ensuremath{{}^{+}}} ) irradiations, for which standard RT or spatially-resolved kinetic Monte Carlo simulations are prohibitively expensive

    Non-Coherent Cooperative Communications Dispensing with Channel Estimation Relying on Erasure Insertion Aided Reed-Solomon Coded SFH M-ary FSK Subjected to Partial-Band Interference and Rayleigh Fading

    No full text
    The rationale of our design is that although much of the literature of cooperative systems assumes perfect coherent detection, the assumption of having any channel estimates at the relays imposes an unreasonable burden on the relay station. Hence, non-coherently detected Reed-Solomon (ReS) coded Slow Frequency Hopping (SFH) assisted M -ary Frequency Shift Keying (FSK) is proposed for cooperative wireless networks, subjected to both partial-band interference and Rayleigh fading. Erasure insertion (EI) assisted ReS decoding based on the joint maximum output-ratio threshold test (MO-RTT) is investigated in order to evaluate the attainable system performance. Compared to the conventional error-correction-only decoder, the EI scheme may achieve an Eb/N0 gain of approximately 3dB at the Codeword Error Probability, Pw , of 10-4 , when employing the ReS (31, 20) code combined with 32-FSK modulation. Additionally, we evaluated the system’s performance, when either equal gain combining (EGC) or selection combining (SC) techniques are employed at the destination’s receiver. The results demonstrated that in the presence of one and two assisting relays, the EGC scheme achieves gains of 1.5 dB and 1.0 dB at the Pw of 10-6 , respectively, compared to the SC arrangement. Furthermore, we demonstrated that for the same coding rate and packet size, the ReS (31, 20) code using EI decoding is capable of outperforming convolutional coding, when 32-FSK modulation is considered, whilst LDPC coding had an edge over the above two schemes

    Measurement of macroscopic plasma parameters with a radio experiment: Interpretation of the quasi-thermal noise spectrum observed in the solar wind

    Get PDF
    The ISEE-3 SBH radio receiver has provided the first systematic observations of the quasi-thermal (plasma waves) noise in the solar wind plasma. The theoretical interpretation of that noise involves the particle distribution function so that electric noise measurements with long antennas provide a fast and independent method of measuring plasma parameters: densities and temperatures of a two component (core and halo) electron distribution function have been obtained in that way. The polarization of that noise is frequency dependent and sensitive to the drift velocity of the electron population. Below the plasma frequency, there is evidence of a weak noise spectrum with spectral index -1 which is not yet accounted for by the theory. The theoretical treatment of the noise associated with the low energy (thermal) proton population shows that the moving electrical antenna radiates in the surrounding plasma by Carenkov emission which becomes predominant at the low frequencies, below about 0.1 F sub P

    Fluid Flows of Mixed Regimes in Porous Media

    Full text link
    In porous media, there are three known regimes of fluid flows, namely, pre-Darcy, Darcy and post-Darcy. Because of their different natures, these are usually treated separately in literature. To study complex flows when all three regimes may be present in different portions of a same domain, we use a single equation of motion to unify them. Several scenarios and models are then considered for slightly compressible fluids. A nonlinear parabolic equation for the pressure is derived, which is degenerate when the pressure gradient is either small or large. We estimate the pressure and its gradient for all time in terms of initial and boundary data. We also obtain their particular bounds for large time which depend on the asymptotic behavior of the boundary data but not on the initial one. Moreover, the continuous dependence of the solutions on initial and boundary data, and the structural stability for the equation are established.Comment: 33 page

    Clothes Minded: An Analysis of the Effects of Donating Secondhand Clothing to Sub-Saharan Africa

    Get PDF
    This thesis examines the effects of overconsumption of clothing in the Global North on African textile industries through increased donations to secondhand stores. I begin by explaining how the growth of the fast fashion industry has increased the purchase and production of clothing over the recent decades. As an industry built on trends that quickly go in and out of style, fast fashion has resulted in massive amounts of unworn clothing. Consumers either throw away or donate their clothing, each of which result in either environmental or economic challenges. I explore post-consumer clothing’s donation route. Most donated clothing goes to secondhand stores such as Goodwill and The Salvation Army. However, with increasing amounts of donations going to these stores, they’ve reached a point in which they can no longer sell as quickly as they receive. Leftovers are sent overseas as a philanthropic action, but are met with concern from economists. Foreign aid to developing countries has been a topic of debate, critiqued as a lazy way of providing a short-term benefit with possibly detrimental long-term results. Introducing post-consumer clothing into African clothing markets raises the concern that they will replace local textile industries. I look at existing literature and fieldwork on this issue in order to examine the effects on textile industries in several countries. While the effects vary in differing countries and there are several other variables involved, such as market and political conditions, collective research shows that used-clothing donations account for 40% of the decline in apparel and textile production in an average African country

    R-evolution: Improving perturbative QCD

    Full text link
    Perturbative QCD results in the MSbar scheme can be dramatically improved by switching to a scheme that accounts for the dominant power law dependence on the factorization scale in the operator product expansion. We introduce the ``MSR scheme'' which achieves this in a Lorentz and gauge invariant way. The MSR scheme has a very simple relation to MSbar, and can be easily used to reanalyze MSbar results. Results in MSR depend on a cutoff parameter R, in addition to the mu of MSbar. R variations can be used to independently estimate i) the size of power corrections, and ii) higher order perturbative corrections (much like mu in MSbar). We give two examples at three-loop order, the ratio of mass splittings in the B*-B and D*-D systems, and the Ellis-Jaffe sum rule as a function of momentum transfer Q in deep inelastic scattering. Comparing to data, the perturbative MSR results work well even for Q ~ 1 GeV, and the size of power corrections is reduced compared to those in MSbar.Comment: 4 pages, 3 figures, axis label for Fig.2 fixe

    Applying graph coloring in resource coordination for a high-density wireless environment

    Full text link
    In a high density wireless environment, channel interference among users of many overlapped Basic Service Sets (OBSSs) is a serious problem. Our solution for the problem relies on a resource coordination scheme that utilizes the spatial distribution of the transceivers for channel reuse and time-slot division multiplexing for downlink transmission sharing among all participating BSSs. In this paper we show that an OBSS environment can be modeled by a planar graph and the OBSS group coordination assignment problem can be considered as a vertex coloring problem whose solution involves at most four colors. The graph coloring solution algorithm for the OBSS group coordination assignment is presented. The actual coloring is demonstrated, using a heuristics of Maximum Degree First. Performance simulation results of the coordination algorithm are also presented. © 2008 IEEE

    Temperature dependent photoluminescence of single CdS nanowires

    Full text link
    Temperature dependent photoluminescence (PL) is used to study the electronic properties of single CdS nanowires. At low temperatures, both near-band edge (NBE) photoluminescence (PL) and spatially-localized defect-related PL are observed in many nanowires. The intensity of the defect states is a sensitive tool to judge the character and structural uniformity of nanowires. As the temperature is raised, the defect states rapidly quench at varying rates leaving the NBE PL which dominates up to room temperature. All PL lines from nanowires follow closely the temperature-dependent band edge, similar to that observed in bulk CdS.Comment: 11 pages, 4 figure
    corecore